Wednesday, November 25, 2009

Ethanol from Cassava

Ethanol is generally produced by the fermentation of sugar, cellulose, or converted starch and has a long history. In Nigeria, local production of ethanol from maize, guinea corn, millet, other starchy substrates, and cellulose is as old as the country itself. Apart from food and pharmaceutical uses, ethanol is finding itself alternative usse for biofuel in most of the developed world for the following reasons:
Cassava Ethanol ProcessFlowchart
It is not poisonous.
It does not cause air pollution or any environmental hazard.
It does not contribute to the greenhouse effect problem (CO2 addition to the atmosphere, causing global warming).
It has a higher octane rating than petrol as a fuel. That is, ethanol is an octane booster and anti-knocking agent.
It is an excellent raw material for synthetic chemicals.
Ethanol provides jobs and economic development in rural areas.
Ethanol reduces country’s dependence on petroleum and it is a source of non-oil revenue for any producing country.
Ethanol is capable of reducing the adverse foreign trade balance.
Equipment required
Peeler
Grater
Jet cooker
Fermentor
Distiller
Steam boiler
Generator
Efficient treatment plant
Basic plant
The first type of plant will produce a strong alcohol from cassava, but this will have an odor as the distilling process is very crude. The plant would bring in fresh cassava, wash and peel, grate, cook in a jet cooker, ferment, distil, and bottle. In addition a steam boiler, generating set, effluent treatment plant and electrical system are required. The actual amount of cassava needed is dependant upon the starch content, but as a guide, cassava at 30% starch content will produce approximately 280 liters of alcohol/tonne. Cassava which is only 20% starch will produce only 180 liters of alcohol/tonne.
The plant will produce approximately 3000 liters/day of alcohol at 96%, which equivalent to 7500 liters/day at 40%. The plant will also produce around 2-3m3/hr of effluent. This has to be disposed of properly and is normally used as an animal feed. This plant operates on a batch basis and can process approximately 4-6 batches/24 hours, producing 500 liters of alcohol/batch. The plant will need good water supply and continuous electrical supply (around 50Kva). The steam requirements are around 1500 kg/hour.
The cost will be in the region of £290,000 which includes all the equipment, shipping, supervision of installation, commissioning, and operator training.
Complex plant
The next type of plant will produce a better quality of alcohol from cassava, and uses a multi-column still so that the complex distilling techniques employed ensures a high quality product, free from all types of odors, etc. The plant would bring in fresh cassava, wash and peel, grate, cook in a jet cooker, ferment, distil, and bottle. In addition a steam boiler, generating set, effluent treatment plant, and electrical system are required. The actual amount of cassava needed is dependant upon the starch content, but as a guide cassava at 30% starch content will produce approximately 280 liters of alcohol/tonne. Cassava which is only 20% starch will produce only 180 liters of alcohol/tonne.
The plant will produce approximately 4000 liters/day of alcohol at 96%, which is equivalent to 10,000 liters/day at 40%. The plant will also produce around 2-3m3/hr of effluent. This has to be disposed of properly and is normally used as an animal feed. This plant operates on a batch basis and can process approximately 4-6 batches/24 hours, producing 500 liters of alcohol/batch. The plant will need a good water supply and a continuous electrical supply (around 50Kva). The steam requirements are around 1500 kg/hour.
The cost will be in the region of £620,000 which includes all the equipment, shipping, supervision of installation, commissioning, and operator training.

Wednesday, October 7, 2009

Peranan Alat Olah Tanah Ripper Terhadap Pertumbuhan Akar dan Produktivitas Ratoon Pada Tanaman Tebu (Saccharum officinarum L.)

Abstrak

Tanaman Tebu menurut ilmu tumbuh-tumbuhan termasuk famili rumput (Graminae) dan golongan Sccarae atau Saccharum. Saccharum ini terbagi dalam 2 keluarga, yaitu : Saccharum spontaneum (glagah) dan Saccharum officinarum (tebu). Tanaman tebu ini semula dikatakan berasal dari India disekitar sungai Gangga dan ada pula yang mengatakan dari kepulauan Pasifik Selatan atau Irian. Tanaman tebu jenis liar pada tahun 1930-1950 masih dijumpai di hutan-hutan Irian Barat, Sulawesi, Maluku dan Kalimantan. Ini membuktikan bahwa tanaman tebu sebenarnya berasal dari Indonesia bukan dari India.

PTPN VII (1987), dari sejarah pergulaan Indonesia pernah mencapai masa jaya sekitar tahun 1920-1940 dengan mencatat prestasi gemilang sebagai negara produsen gula terbesar di dunia. Pada tahun tersebut tercatat 130 pabrik gula semua berada di pulau Jawa pada saat itu memiliki daerah yang subur dengan menggunakan Sistem Reynoso (lahan sawah) serta dibangunnya Balai Pusat Penyelidikan perusahaan Gula (BP3G), sekarang P3GI (Pusat penelitian Perkebunan Gula Indonesia). Perkembangan pergulaan nasional selanjutnya mengalami penurunan produktivitas yang sangat tajam, sehingga menyebabkan industri gula di Indonesia kurang efisien.

Apabila dikelola sebagai tanaman tahunan, tentu pola pikir dan pola tanam menjadi berbeda. Tanaman ratoon bukan lagi dianggap tanaman sisa tapi merupakan tanaman harapan. Berpikir jangka panjang untuk merawat tanaman tebu, dan perbaikan mutu ratoon untuk menjaga agar setiap tunas yang tumbuh akan jadi batang yang diharapkan..

Penelitian ini bertujuan untuk mengetahui peranan alat olah tanah ripper terhadap pertumbuhan akar dan produktivitas ratoon pada tanaman tebu.

Sundara (1998), menyatakan bahwa dibanyak negara umumnya tanaman ratoon produktivitasnya menurun, tetapi 10 % diantaranya mempunyai produktivitas yang sama dengan tanaman baru, bahkan ada yang lebih baik dari tanaman baru. Terbukti dari percobaan Arifin, Z. dan Prahardini PER (2006), degan mengubah cara pengolahan tanah menggunakan ripper memperlihatkan bahwa tebu ratoon produktivitas tebunya dapat lebih tinggi yakni 118,77 ton/ha dibanding tebu plant cane 111.84 ton/ha. Realita yang saat ini menjadi minoritas diharapkan dapat diperbaiki menjadi mayoritas.

Hasil penelitian menyimpulkan bahwa pembongkaran ratoon secara cepat mempunyai berbagai dampak merugikan dari segi ekonomi, dan ancaman praktik budidaya tanaman tebu yang akan dikembangkan, terutama pada saat kekeringan / kemarau yang berkepanjangan. Perlu biaya investasi yang tinggi untuk membuat sistem irigasi buatan untuk ketersediaan air pada lahan pertanian. Dengan dilakukan pengolahan tanah dengan menggunakan ripper ditinjau dari aspek peranannya terhadap peningkatan ketahanan masa ratoon dan kekurangan air pada tanaman tebu, maka penanaman tebu dapat teratasi dengan baik.


NB : Tolong beri Saran, karena thesis ini belum sempurna

Tuesday, September 1, 2009

Brewery Growing ‘Monster Cane’

source : www.abc.net.au
It is three meters tall and productive even in poor soil, it holds up in droughts and typhoons, and it yields twice as many stems as most sugarcane. No wonder they call it "Monster Cane".
This new variety of sugarcane, named for its size as much as its vigor, is grown on a test field on the tiny island of Ie in Japan’s southernmost prefecture of Okinawa.
When a powerful typhoon swept through the region last month, knocking down trees and houses, the cane was unharmed.
Researchers at major Japanese beer maker Asahi Breweries Ltd. are hoping that someday farmers across Okinawa will be growing Monster Cane not only for sugar but also to fuel cars, raise cattle and fertilize farmland.
Formally known as "high-biomass sugarcane", Monster Cane is Japan’s first variety designed to produce ethanol without sacrificing sugar output. It was jointly developed by Asahi and the National Agricultural Research Center for Kyushu Okinawa Region, an administrative agency.
In a few months, the cane grown on Ie will be harvested to feed a pilot plant run by Asahi Breweries, which aims to test its technology for producing ethanol from cane at a cost of just 30 yen (25 cents) per liter, making it competitive with gasoline.
Asahi aims to put its technology into practical application after completing tests at the pilot plant in 2010.
Researchers also hope the new variety will breathe life into Japanese farming of sugarcane, an important part in crop rotation in Okinawa, by adding value to sugar production.
Researchers at major Japanese beer maker Asahi Breweries Ltd. are hoping that someday farmers across Okinawa will be growing Monster Cane not only for sugar but also to fuel cars, raise cattle and fertilize farmland.
Formally known as "high-biomass sugarcane", Monster Cane is Japan’s first variety designed to produce ethanol without sacrificing sugar output. It was jointly developed by Asahi and the National Agricultural Research Center for Kyushu Okinawa Region, an administrative agency.
In a few months, the cane grown on Ie will be harvested to feed a pilot plant run by Asahi Breweries, which aims to test its technology for producing ethanol from cane at a cost of just 30 yen (25 cents) per liter, making it competitive with gasoline.
Asahi aims to put its technology into practical application after completing tests at the pilot plant in 2010.
Researchers also hope the new variety will breathe life into Japanese farming of sugarcane, an important part in crop rotation in Okinawa, by adding value to sugar production.
Ethanol is carbon-neutral as the CO2 released in the combustion of the fuel is offset by the CO2 captured by plants through photosynthesis. But its use raises the issue of balancing the supply of crops for use in ethanol production with supply of crops for food and feed.
Critics also say ethanol is no solution to global warming if massive inputs of fossil fuels are required to grow the crops and power the facilities used to produce ethanol.
To address these concerns, Asahi has developed a carbon-neutral process of producing ethanol from high-biomass sugarcane.
Asahi says the new cane variety can produce three times as much ethanol as other strains, and slightly more sugar. It also yields more bagasse, or crushed sugarcane refuse, which is burned to generate the energy to run a sugar-ethanol plant.
Asahi estimates the yield of the new sugarcane at 37.4 tonnes per hectare excluding moisture, which can be processed into 7.1 tons of sugar, 4.3 kiloliters of ethanol and 24 tons of bagasse.
This compares with the yield of a conventional cane type at 17.4 tons per hectare, sugar output at 6.9 tons, ethanol production at 1.4 kiloliters and bagasse volume at 7.8 tonnes, which is too small to produce sufficient energy for a processing plant.
The volume of bagasse from high-biomass sugarcane is more than enough to generate energy for the Asahi plant. Surplus bagasse is used as bedding for premium beef cattle on Ie Island, and as fertilizer after being mixed with animal excrement.
Ethanol produced at the Asahi plant is blended with gasoline to fuel cars owned by the Ie village office. Japan allows the production and sale of E3, a fuel that is 3 percent ethanol and 97 percent gasoline.
"It would be great if this project is viable on a larger scale," said Satoru Urasaki at the Ie government office.
An increasing number of Japanese farmers have been abandoning sugarcane production amid intensifying competition from cheap imported sugar and shrinking domestic sugar consumption.
Sugarcane output on Ie Island plunged to a record-low 1,500 tons last year from 52,000 tons in the peak year of 1979. The island’s only sugar mill closed in 2004.
"If an ethanol plant is set up for commercial operations in Okinawa, sugarcane production may recover," said Hirokazu Nagayama, director at a farmers cooperative on the island.

Wednesday, July 22, 2009

Potensi Produksi "Biofuel" Generasi II

Sumber : Nawa Tunggal

Indonesia memiliki potensi besar untuk memproduksi generasi kedua biofuel yang dapat dihasilkan dari limbah, residu, serta tanaman nonpangan. Generasi kedua biofuel ini tidak "memakan" tanaman tebu, jagung, kedelai, minyak sawit, ataupun bahan baku yang membutuhkan area lahan seperti biji jarak pagar. Teknologi generasi kedua biofuel (bahan bakar nabati) bukan hal baru dari segi penerapan teori-teori biologi, kimia, maupun fisika. Rekayasa teknologi ini mampu mengintegrasikan teori-teori yang ada hingga memperoleh temuan baru sebagai alternatif pemenuhan energi masa depan yang betul-betul ramah lingkungan.
Limbah yang dapat digunakan sebagai bahan baku generasi kedua biofuel antara lain limbah cair yang dapat ditemukan di mana pun. Sumbernya bisa berasal dari aktivitas rumah tangga, industri, perdagangan, pertanian, ataupun fasilitas umum seperti rumah sakit dan lain-lain. Dari sifatnya yang mudah ditemui dan jumlahnya berlimpah, limbah cair tergolong sebagai bahan baku paling berpotensi.
"Masyarakat perkotaan di negara-negara berkembang sering menghadapi persoalan lingkungan yang berat karena limbah cair yang dihasilkan. Masyarakat seperti itu akan sangat membutuhkan aplikasi teknologi generasi kedua biofuel ini," kata Tim Grotenhuis, ilmuwan teknologi lingkungan Universitas Wageningen, Belanda, saat menerima kunjungan Kompas atas undangan Netherlands Education Support Office (NESO) Indonesia, Jumat (21/9) lalu.
Neso sebagai lembaga di bawah Departemen Pendidikan Nasional Belanda memiliki program mengenalkan dunia pendidikan tinggi di Belanda, sekaligus sebagai lembaga yang menyalurkan beasiswa bagi profesional muda di Indonesia. Universitas Wageningen sebagai salah satu universitas riset yang dikenalkan NESO merupakan perguruan tinggi yang memfokuskan perhatian pada bioteknologi (bioenergi).
Beragam
Tim Grotenhuis pada kesempatan itu menyampaikan, Universitas Wageningen memiliki beberapa riset pengembangan bioteknologi yang beragam. Di antaranya adalah pengembangan bioteknologi minyak jarak sebagai pengganti minyak diesel berbahan bakar fosil.
Selain itu, mereka juga mengembangkan blue energy (energi biru) yang dihasilkan melalui proses ionisasi air tawar dan air laut hingga dapat menghasilkan listrik. Akibat terbatasnya waktu kunjungan saat itu, Tim Grotenhuis menawarkan untuk mengunjungi proyek yang spesifik, yaitu pemanfaatan limbah cair untuk menghasilkan energi. Ini dipilih semata-mata karena sesuai dengan persoalan riil yang ada di negara berkembang seperti Indonesia.
Menurut Tim Grotenhuis, penanganan limbah cair yang ada selama ini masih dipusatkan pada proses daur ulang air limbah jadi air bersih atau air minum. Teknologi generasi kedua biofuel berperan untuk lebih mengoptimalkan manfaat limbah cair dengan meningkatkan sasaran pemanfaatan, yaitu untuk memproduksi energi dan bahan gizi (nutrient).
Limbah yang dihasilkan teknologi bio-fuel cell berupa air murni sehingga teknologi ini tergolong paling ramah lingkungan dan dapat menunjang ketersediaan air minum. Di samping energi, bahan gizi yang dimaksudkan di antaranya adalah hasil pengolahan limbah cair yang salah satu produknya adalah bahan gizi berupa fosfor dan nitrogen yang bermanfaat bagi tumbuhan seperti eceng gondok dan ganggang.
Aplikasi teknologi generasi kedua biofuel yang terpenting adalah proses menghasilkan hidrogen sebagai bahan bakar bio-fuel cell. Pembuatan hidrogen diawali dengan proses pembentukan gas metana (CH>sub<4>res<>res<).
Sebagai catatan, pembentukan gas metana secara alamiah terdapat pada proses pembusukan sampah domestik yang secara alamiah mengalami pemisahan lindi dan sampah padat. Gas metana terbentuk dari sisa sampah atau limbah padat tersebut. Sementara itu, lindi diproses ulang menjadi air murni. Endapan padat sampah kemudian mengalami proses anaerobik (reaksi tanpa oksigen) yang menghasilkan gas metana dan karbon dioksida (CO2).
Gas metana itu lalu dipetik. Dari gas metana yang dihasilkan, kemudian dapat dipetik hidrogen (H) dengan kandungan 90 persen melalui pemanasan 400° Celsius-500° Celsius dan proses separasi melalui membran katalisator dengan meninggalkan sisa berupa karbon dioksida. Hidrogen tersebut kemudian siap digunakan untuk menghasilkan energi dengan teknologi fuel cell. Teknologi fuel cell dengan bahan bakar hidrogen tak hanya bermanfaat untuk memproduksi listrik, tetapi juga dapat dikembangkan sebagai bahan bakar alat transportasi. Saat ini beberapa negara sudah mengembangkan air murni yang ramah lingkungan sebagai bahan bakar alat transportasi.
"Konsep teknologi generasi kedua biofuel dengan bahan baku limbah cair ini tergolong baru dan kami masih terus mengembangkan riset untuk menghasilkan teknologi yang mudah diaplikasikan," kata Grotenhuis.
Residu serat tumbuhan
Hal menarik terkait aplikasi teknologi generasi kedua biofuel secara terpisah diungkapkan salah satu warga Indonesia yang bekerja di Belanda, Michael Putrawenas (23). Michael, lulusan Universitas Erasmus, Belanda, saat ini menjadi carbondiokside strategy analyst pada perusahaan Shell Renewables.
"Eropa sangat berminat dengan pengembangan teknologi generasi kedua biofuel," kata Michael. Michael mencontohkan, perusahaannya sekarang mengembangkan produksi etanol selulosa dari residu serat tumbuhan yang berasal dari sisa tanaman produksi, seperti jerami dan sebagainya. Shell menggandeng Iogen Corporation dari Kanada untuk mengadakan riset pengembangannya.
Riset etanol selulosa yang dipelopori Shell ini dimulai sejak 2002. Pada tahun 2006, Volkswagen kemudian bergabung dengan Shell dan Iogen Corporation untuk melakukan studi kelayakan agar secara ekonomis mampu memproduksi bahan bakar etanol selulosa ini di Jerman.
Upaya yang ditempuh Shell memberikan sekadar gambaran kecil lainnya, betapa banyak peluang yang bisa diraih untuk mengaplikasikan teknologi generasi kedua biofuel. Tantangan yang menarik bahwa limbah ternyata kemudian tidak harus tetap sebagai limbah yang selama ini kurang memberi manfaat. Hal ini hanya bisa terjadi ketika dilakukan riset untuk pengembangan teknologi generasi kedua biofuel....
Bagi Indonesia, pengembangan teknologi generasi kedua biofuel ini pantas dilirik. Gas metana begitu melimpah mengingat cara pembuangan sampah dengan sistem open dumping. Akan tetapi, ironisnya, ternyata lembaga teknis seperti Badan Pengkajian dan Penerapan Teknologi (BPPT) hingga kini terus mengimpor gas metana untuk produksi bahan bakar hidrogen. Jadi...?

Biofuel Could Lighten Jet Fuel’s Carbon Footprint Over 80 Percent

Source : http://www.biofuelhq.com/biofuel-could-lighten-jet-fuels-carbon-footprint-over-80-percent/
David Shonnard, Robbins Chair Professor of Chemical Engineering, analyzed the carbon dioxide emissions of jet fuel made from camelina oil over the course of its life cycle, from planting to tailpipe. “Camelina jet fuel exhibits one of the largest greenhouse gas emission reductions of any agricultural feedstock-derived biofuel I’ve ever seen,” he said. “This is the result of the unique attributes of the crop–its low fertilizer requirements, high oil yield, and the availability of its coproducts, such as meal and biomass, for other uses.”
Camelina sativa originated in Europe and is a member of the mustard family, along with broccoli, cabbage and canola. Sometimes called false flax or gold-of-pleasure, it thrives in the semi-arid conditions of the Northern Plains; the camelina used in the study was grown in Montana.
Oil from camelina can be converted to a hydrocarbon green jet fuel that meets or exceeds all petroleum jet fuel specifications. The fuel is a “drop-in” replacement that is compatible with the existing fuel infrastructure, from storage and transportation to aircraft fleet technology. “It is almost an exact replacement for fossil fuel,” Shonnard explained. “Jets can’t use oxygenated fuels like ethanol; they have to use hydrocarbon replacements.”
Shonnard conducted the life cycle analysis for UOP LLC, of Des Plaines, Ill., a subsidiary of Honeywell and a provider of oil refining technology. In an April 28 release, it cited Boeing executive Billy Glover, managing director of environmental strategy, who called camelina “one of the most promising sources for renewable fuels that we’ve seen.”
“It performed as well if not better than traditional jet fuel during our test flight with Japan Airlines earlier this year and supports our goal of accelerating the market availability of sustainable, renewable fuel sources that can help aviation reduce emissions,” Glover said. “It’s clear from the life cycle analysis that camelina is one of the leading near-term options and, even better, it’s available today.”
Because camelina needs little water or nitrogen to flourish, it can be grown on marginal agricultural lands. “Unlike ethanol made from corn or biodiesel made from soy, it won’t compete with food crops,” said Shonnard. “And it may be used as a rotation crop for wheat, to increase the health of the soil.”
Tom Kalnes is a senior development associate for UOP in its renewable energy and chemicals research group. His team used hydroprocessing, a technology commonly used in the refining of petroleum, to develop a flexible process that converts camelina oil and other biological feedstocks into green jet fuel and renewable diesel fuel.
As to whether we will all be flying in plant-powered aircraft, his answer is, “It depends.”
“There are a few critical issues,” Kalnes said. “The most critical is the price and availability of commercial-scale quantities of second generation feedstocks.” Additionally, more farmers need to be convinced to grow a new crop, and refiners must want to process it.“But if it can create jobs and income opportunities in rural areas, that would be wonderful,” he said.

Mengenal Biofuel dan Biodiesel

Sumber : wikipedia
Biofuel
Bahan bakar minyak atau dikenal dengan sebutan BBM merupakan salah satu bahan pokok untuk kehidupan manusia. Misalnya saja bensin untuk kendaraan bermotor, solar untuk mesin diesel, minyak tanah untuk memasak. BBM termasuk sumber daya alam yang tidak dapat diperbaharui. Karenanya, manusia perlu memikirkan pengganti dari BBM tersebut. BBM yang berasal dari fosil memang makin lama makin tipis. Energi alternatif mulai banyak dikembangkan, termasuk di Indonesia. Indonesia yang luas dan berada di iklim tropis mempunyai keuntungan besar memanfaatkan potensi energi dari tanaman dan ternak, atau yang dikenal sebagai bioenergi.
Apa saja yang tergolong bioenergi? Ada beberapa jenis bioenergi, yakni : biodiesel, bioetanol, biogas, Pure Plant Oil (PPO), biobriket, bio-oil. Energi dari tanaman dan hewan inilah salah satu penyebab makin naiknya harga-harga hasil bumi (seperti kedelai, gandum, dll) karena sebagian digunakan untuk membuat bioenergi. Biofuel dan biodiesel merupakan salah satu bahan bakar yang dihasilkan dari bahan-bahan organik.
Biofuel adalah setiap bahan bakar baik padatan, cairan ataupun gas yang dihasilkan dari bahan-bahan organik. Biofuel dapat dihasilkan secara langsung dari tanaman atau secara tidak langsung dari limbah industri, komersial, domestik atau pertanian. Ada tiga cara untuk pembuatan biofuel: pembakaran limbah organik kering (seperti buangan rumah tangga, limbah industri dan pertanian); fermentasi limbah basah (seperti kotoran hewan) tanpa oksigen untuk menghasilkan biogas (mengandung hingga 60 persen metana), atau fermentasi tebu atau jagung untuk menghasilkan alkohol dan ester; dan energi dari hutan (menghasilkan kayu dari tanaman yang cepat tumbuh sebagai bahan bakar).
Proses fermentasi menghasilkan dua tipe biofuel: alkohol dan ester. Bahan-nbahan ini secara teori dapat digunakan untuk menggantikan bahan bakar fosil tetapi karena terkadang diperlukan perubahan besar pada mesin, biofuel biasanya dicampur dengan bahan bakar fosil. Uni Eropa merencanakan 5,75 persen etanol yang dihasilkan dari gandum, bit, kentang atau jagung ditambahkan pada bahan bakar fosil pada tahun 2010 dan 20 persen pada 2020. Sekitar seperempat bahan bakar transportasi di Brazil tahun 2002 adalah etanol.
Biodiesel
Biodiesel merupakan bahan bakar yang terdiri dari campuran mono--alkyl ester dari rantai panjang asam lemak, yang dipakai sebagai alternatif bagi bahan bakar dari mesin diesel dan terbuat dari sumber terbaharui seperti minyak sayur atau lemak hewan.
Sebuah proses dari transesterifikasi lipid digunakan untuk mengubah minyak dasar menjadi ester yang diinginkan dan membuang asam lemak bebas. Setelah melewati proses ini, tidak seperti minyak sayur langsung, biodiesel memiliki sifat pembakaran yang mirip dengan diesel (solar) dari minyak bumi, dan dapat menggantikannya dalam banyak kasus. Namun, dia lebih sering digunakan sebagai penambah untuk diesel petroleum, meningkatkan bahan bakar diesel petrol murni ultra rendah belerang yang rendah pelumas. Dia merupakan kandidat yang paling dekat untuk menggantikan bahan bakar fosil sebagai sumber energi transportasi utama dunia, karena ia merupakan bahan bakar terbaharui yang dapat menggantikan diesel petrol di mesin sekarang ini dan dapat diangkut dan dijual dengan menggunakan infrastruktur sekarang ini.
Penggunaan dan produksi biodiesel meningkat dengan cepat, terutama di Eropa, Amerika Serikat, dan Asia, meskipun dalam pasar masih sebagian kecil saja dari penjualan bahan bakar. Pertumbuhan SPBU membuat semakin banyaknya penyediaan biodiesel kepada konsumen dan juga pertumbuhan kendaraan yang menggunakan biodiesel sebagai bahan bakar.
Membuat biodiesel
Pada skala kecil dapat dilakukan dengan bahan minyak goreng 1 liter yang baru atau bekas. Methanol sebanyak 200 ml atau 0.2 liter. Soda api atau NaOH 3,5 gram untuk minyak goreng bersih, jika minyak bekas diperlukan 4,5 gram atau mungkin lebih. Kelebihan ini diperlukan untuk menetralkan asam lemak bebas atau FFA yang banyak pada minyak goreng bekas. Dapat pula mempergunakan KOH namun mempunyai harga lebih mahal dan diperlukan 1,4 kali lebih banyak dari soda.
Proses pembuatan; Soda api dilarutkan dalam Methanol dan kemudian dimasukan kedalam minyak dipanaskan sekitar 55 oC, diaduk dengan cepat selama 15-20 menit kemudian dibiarkan dalam keadaan dingin semalam. Maka akan diperoleh biodiesel pada bagian atas dengan warna jernih kekuningan dan sedikit bagian bawah campuran antara sabun dari FFA, sisa methanol yang tidak bereaksi dan glyserin sekitar 79 ml. Biodiesel yang merupakan cairan kekuningan pada bagian atas dipisahkan dengan mudah dengan menuang dan menyingkirkan bagian bawah dari cairan. Untuk skala besar produk bagian bawah dapat dimurnikan untuk memperoleh gliserin yang berharga mahal, juga sabun dan sisa methanol yang tidak bereaksi.
Mengapa minyak bekas mengandung asam lemak bebas ?
Ketika minyak digunakan untuk menggoreng terjadi peristiwa oksidasi, hidrolisis yang memecah molekul minyak menjadi asam. Proses ini bertambah besar dengan pemanasan yang tinggi dan waktu yang lama selama penggorengan makanan. Adanya asam lemak bebas dalam minyak goreng tidak bagus pada kesehatan. FFA dapat pula menjadi ester jika bereaksi dengan methanol, sedang jika bereaksi dengan soda akan mebentuk sabun. Produk biodiesel harus dimurnikan dari produk samping, gliserin, sabun sisa methanol dan soda. Sisa soda yang ada pada biodiesel dapat henghidrolisa dan memecah biodiesel menjadi FFA yang kemudian terlarut dalam biodiesel itu sendiri. Kandungan FFA dalam biodiesel tidak bagus karena dapat menyumbat filter atau saringan dengan endapan dan menjadi korosi pada logam mesin diesel.

Transgenik untuk produksi Biofuel

Sumber : SYAMSUL

Pergeseran dari penggunaan bahan makanan untuk ketahanan pangan (food security) ke ketersediaan energi (energy security) melalui biofuel membawa dunia memasuki fase menentukan.
Apakah memberi "makanan" pada kendaraan dan pabrik jauh lebih bermakna daripada memberi makanan pada manusia.Fakta yang muncul saat ini, memang mengindikasikan timbangan kepentingan lebih menguntungkan pada tujuan pertama daripada tujuan kedua.Pembuktiannya pun sederhana, yaitu tinggal melihat bagaimana harga produk-produk agrofuel (produk pertanian sebagai sumber biofuel) membumbung di pasaran internasional, hingga pengusaha lokal "ngiler" dan lebih memilih mengekspor daripada melepas ke pasar domestik untuk kepentingan perut rakyat.Menurut situs pasar Chicago per tanggal 29 Februari 2008, harga jagung untuk pengiriman dua bulan lagi (Mei) sudah mencapai 556,4 dolar AS per bushel. Sedangkan harga kacang kedelai untuk pengiriman pada bulan yang sama di pasar berjangka Chicago juga ikut-ikutan naik menjadi 1.536,50 dolar AS per bushel, dan harga minyak kedelai menjadi 68,820 dolar AS per pon.Padahal menurut situs yang sama, kenaikan harga komoditas jagung dunia saat ini dibanding tahun lalu sudah mencapai 32,3 persen, harga produk kedelai naik 42,0 persen dan harga produk minyak kedelai sebesar 39,4 persen.Belum lagi, produk agrofuel lainnya seperti tebu, yang menjadi produk andalan Brazil untuk memenuhi lebih dari 50 persen kebutuhan BBM domestik, semakin menjadi "produk mahal".Bagaimana dengan Indonesia? Sejauh ini, Indonesia sudah membanjiri produk kelapa sawit dan jagung ke pasar global untuk memenuhi kebutuhan energi dunia akan biofuel. Sebagai negara yang dikenal memiliki keunggulan alam tanah yang subur, Indonesia memiliki banyak peluang untuk menggelontorkan hasil buminya dalam rangka memenuhi dahaga negara-negara industri di dunia akan energi yang lebih murah dan ramah lingkungan.Menyadari hal itu, pemerintah pun dengan gencar mendorong agenda pemanfaatan lahan-lahan kritis untuk tanaman jarak pagar (jatropha curcas).Peluang besar juga dimiliki produk tebu yang cocok ditanam di beberapa wilayah di Indonesia, demikian pula singkong, aren dan lain-lain.Momentum, di mana banyak negara di dunia membutuhkan energi dalam jumlah besar, dan semakin mahalnya bahan bakar fosil harus dimanfaatkan Indonesia dengan sebaik-baiknya.Tetapi, tentu saja tanpa mengorbankan ketahanan pangan sehingga rakyat kelaparan, dan tanpa mengorbankan lahan hutan sehingga tidak berdampak pada lingkungan dan perubahan iklim (climate change).Rekayasa genetikaPakar Biofuel asal Inggris, Richard Warburton, mengemukakan bahwa selain pemanfaatan lahan-lahan kritis, negara berkembang seperti Indonesia seharusnya dapat mengembangkan teknologi rekayasa genetika (Genetically Modified Technology) untuk menghasilkan tanaman-tanaman agrofuel."Ini adalah saat yang tepat untuk merangkul teknologi rekayasa genetika, kecuali jika nanti muncul teknologi yang lebih mampu meningkatkan produksi secara signifikan," kata Warburton.Diakuinya, memang banyak pihak yang menyangsikan teknologi tersebut karena rekayasa genetika masih menjadi hal yang kontroversial, terutama untuk menghasilkan bahan pangan bagi manusia, seperti yang terjadi di Eropa Barat."Para petani tradisional di sana sangat menentang karena bisa mematikan usaha mereka," ujarnya. Menurut dia, mereka yang masih menentang teknologi itu masih belum memiliki pengetahuan yang cukup tentang masalah yang tengah berkembang di dunia, terutama tentang defisitnya bahan makanan akibat `demam biofuel.Pilihan pemanfaatan teknologi rekayasa genetika untuk menghasilkan agrofuel juga menjadi perhatian Uni Eropa (EU).Komisi Eropa, lembaga eksekutif UE, baru-baru ini menyampaikan ke Dewan Eropa, yang beranggotakan perwakilan dari anggota UE, sebuah proposal yang intinya mengizinkan penggunaan teknologi rekayasa genetika untuk memproduksi kacang kedelai (kode A2704-12) dan sutera (kode LL25) sebagai bahan makanan dan produk impor.Meski belum ada tanggapan dari Dewan, proposal itu menyebutkan bahwa berdasarkan kajian yang dilakukan, teknologi tersebut tidak memiliki resiko apapun terhadap manusia atau hewan atau lingkungan. Warburton juga mengingatkan, jika kebijakan menghasilkan makanan dengan rekayasa genetika diadaptasi oleh sebuah negara, maka yang terpenting adalah bagaimana menjaga agar tidak ada ruang bagi peredaran makanan hasil rekayasa genetika yang tidak memperoleh izin atau tanpa uji kesehatan.Kebijakan pemerintahSementara itu, peneliti Lembaga Ilmu Pengetahuan Indonesia (LIPI), Arief B. Witarto, mengatakan bahwa bagaimana adaptasi teknologi rekayasa genetika tersebut pada produk pertanian sepenuhnya bergantung pada kebijakan pemerintah."Untuk pemanfaatan teknologi rekayasa genetika, dukungan pemerintah sangat krusial untuk mendorong bioteknologi ini menjadi motor penggerak ekonomi kita di masa depan," katanya. Meskipun demikian, dia mengusulkan agar penerapan teknologi rekayasa genetika itu lebih diarahkan pada tanaman pertanian non pangan untuk mengurangi pertentangan.Dengan begitu, Indonesia bisa terhindar dari krisis pangan dan pada saat yang sama masih bisa kecipratan kue keuntungan dari "booming" biofuel di dunia.Dalam workshop ilmiah beberapa waktu lalu di Cibinong, diuraikannya, terungkap fakta bahwa Jepang tengah memanfaatkan teknologi serupa untuk menghasilkan jamur yang bisa menghancurkan komponen-komponen lignoselulosa dan selulosa dari chip kayu sehingga bisa dihasilkan biofuel berbasis selulosa "Akhirnya kembali lagi ke regulasi pemerintah yang tegas dan konsisten agar pengembangan teknologi dan upaya industri, bisa saling mendukung, malah tidak menyaingi," tukasnya. Selain dukungan regulasi, tambahnya, pemerintah juga perlu menciptakan suasana yang kondusif untuk pengembangan bioteknologi di Indonesia, seperti dengan memberi informasi yang jelas, tepat dan tidak berpotensi menciptakan konflik di masyarakat."Jangan sampai masyarakat bertanya, aman atau tidak?" katanya.Tarik menarik di dunia internasional mengenai pemanfaatan tanaman pertanian untuk bahan bakar nabati atau bahan pangan memang seharusnya bisa dimanfaatkan Indonesia, termasuk dengan pemanfaatan teknologi rekayasa genetika, ujarnya.Indonesia tentu tidak ingin menjadi korban perang kepentingan negara-negara industri yang terus membutuhkan energi dalam jumlah yang semakin besar dan harga produk komoditas pertanian semakin mahal."Kita memang menikmati keuntungan dari semakin mahalnya harga CPO, tetapi kita juga terpukul oleh semakin mahalnya minyak goreng dan impor kacang kedelai yang menjadi bahan baku beberapa makanan pokok seperti tahu dan tempe," katanya. Apalagi pada kenyataannya, keuntungan dari ekspor CPO hanya dinikmati segelintir pengusaha, sementara semakin mahalnya impor kedelai menjadi berita buruk bagi pemerintah dan masyarakat kecil. Jika memang dibutuhkan, pemerintah dapat mengajukan rancangan peraturan tentang penerapan teknologi rekayasa genetika, apakah dapat diterapkan pada tanaman pertanian pangan atau hanya tanaman pertanian non pangan. Tentu saja, ini artinya termasuk kebutuhan pembiayaan yang dibutuhkan untuk pengembangan teknologi tersebut, katanya menambahkan. (ANTARA*)

2nd Algae Biofuel Summit 2009

Source : http://www.algaebiofuelsummit.com/
While number of bio-feed stock are currently being tried for bio-diesel production, out of which algae have emerged as one of the most promising source for bio-diesel production to reduce the burden of oil crises and fast depleting fossil oil reserves. Algae are emerging as preferred feed stock for global biofuel industry owing to their non-food nature, capability to grow on waste land with sea water and highest oil yield per acre.
Algae farming for oil is the next biggest opportunity for the Biofuel industry. Algae, like corn, soybeans, sugar cane, Jatropha, and other plants, use photosynthesis to convert solar energy into chemical energy. They store this energy in the form of oils, carbohydrates, and proteins. The plant oil can be converted to biodiesel; hence biodiesel is a form of solar energy. The more efficient a particular plant is at converting that solar energy into chemical energy, the better it is from a biodiesel perspective, and algae are among the most photosynthetically efficient plants on earth.
The main objective of the Summit is to provide an improved up-to-date understanding of the next generation feedstocks and technologies in Algae Biofuel Industry. The Summit will be an excellent platform to disseminate information regarding recent research and development activities in the field of Algae, mass production systems, Photobioreactor technologies and other important areas of Algae Biofuel Industry. In view of Biofuels emerging as a trillion dollar futuristic industry, the summit shall bring out many value added consulting opportunities for the speakers as well as industry experts. The technical & financial topics of summit will cover the entire Algae Biofuel Industry.
During last one year, Growdiesel has organized two highly successful international summits “Algae Biofuel Summit 2008” from 17th to 19th September 2008 & “Energy Farming Summit 2009” on 12th & 13th April 2009 in India. These summits was attended by researchers, scientist, top management experts and delegates from leading research institutes, universities and reputed organizations from over 21 countries across the world.
Growdiesel Climate Care Council is pleased to invite you to the next version of International Summit on Algae Biofuels to be held on 8th, 9th & 10th of September 2009 in India. The Summit is focused on next generation of Biofuels using Algae as the main feedstock. The summit offers an excellent opportunity for investors, entrepreneurs, Biofuel companies, renewable fuel experts, their associates and academia to share their valuable experiences and knowledge.


Key topics to be covered at 2nd Algae Biofuel Summit 2009

§ An introduction to Biofuels
§ An introduction to First Generation Biofuels
§ Current Status of global biofuel industry
§ An introduction to Algae Biofuel – The next Generation Biofuel
§ Advantages of Algae over first generation biofuels
§ Current status of global algae biofuel industry.
§ Pros & Cons – sustainability factors in technological, economical , social & regulatory environments. Do Algae Biofuels provide solutions to the fuel vs. food debate?
§ An introduction to An introduction to Algae Growing Systems
§ Studying the technological options for algae farming systems-Open Ponds or Enclosed Ponds
§ Enclosed Photobioreactor Systems
§ Hybrid systems using Enclosed Ponds & Enclosed Photobioreactor Systems
§ Enclosed Photobioreactors vs. open ponds - which is the right technology for commercial Algae Biofuel projects?
§ Studying the capacity options for energy farming systems. Small vs. large: What is the right size of an energy farm?
§ Lipid Production from microalgae, strain selection, induction of lipid synthesis and outdoor growth- Algal Strain Selection and development of Algae Mass Culture Techniques for Biofuel Production
§ Maximising solar conversion efficiency in mass culture
§ Achieving both high oil content and high productivity in mass culture
§ Opportunities in Algae Biofuel Sector for corporate
§ Using Algae as a tool for CO2 mitigation and driving the Carbon Capture and Recycling process for reversal of global warming
§ Developing a process for Production of algae from industrial plant flue gases – An approach toward Emission to Biofuel
§ Opportunities in Algae Biofuel Sector for SME-small & medium entrepreneurs
§ Financial Modelling and feasibility assessment for decentralized Bioenergy farm Project
§ Developing a process to purify, compress and bottle algae biogas as compressed methane gas for using as motor fuel and cooking gas
§ Establishing a marketing network to sell environmental friendly bioenergy products
§ Opportunities in Algae Biofuel Sector for Rural Entrepreneurs
§ Sustained algae cultivation in open ponds
§ Developing a process for integrating Algae Biofuel projects with dairy, piggery, poultry and aquaculture farms
§ Developing natural milk with high percentage of good cholesterol
§ Developing eggs and poultry products with high percentage of good cholesterol
§ Opportunities in Algae Biofuel Sector for Public Bodies/ESCO companies
§ Developing a process to utilize Algae for treatment of liquid waste/effluent waste water & using the resultant algal biomass for Bioenergy production
§ Developing a process for extracting nutrients from municipal waste water before safe discharge in river streams & using the resultant algal biomass for Bioenergy production
§ One to one meeting of Biofuel producers with biofuel product traders to discuss opportunities for mutual tie-up
§ Road Map to enter the trillion dollars next generation Biofuel Industry by Thinking BIG & starting small
§ Developing a CDM project for obtaining Carbon credits for Algae Biofuel projects
§ Tapping innovative Financing options for Integrated Bioenergy Projects


Frequently Asked Questions about Algae Biofuels

Q: What are algae?
Algae are simple organisms that range from very small, single-celled microalgae to macroalgae that group into very large organisms such as kelp. There are more than 300,000 species of algae in global algae culture collections. The vast majority of algae are photosynthetic, deriving energy from the sun to produce energy and biomass.

Q: Are algae currently a commercial crop?
Yes. Algae are grown commercially around the world, primarily for nutritional, feed, and specialty product use.

Q: What is required to grow algae?
The primary requirements for growing algae are sunlight, water, and carbon dioxide (CO2). Algae also require nutrients and environmental conditions appropriate to the specific algal species.

Q: How much CO2 is used by algae?
Algae productivity is dependent on carbon intake, as carbon constitutes over 50% by weight of Algae Biomass. Algae can consume high concentrations of CO2 (between 5-30%) as it is emitted from power, cement and chemical plants before it is absorbed into the atmosphere. Atmospheric CO2, at less than 0.04%, need to be supplemented with additional CO2 to deliver high productivities.

Q: What kind of algae is used for biofuels?
Microalgae are selected based on a number of factors, most notably high innate growth rates, favorable overall composition (lipids, carbohydrates, and proteins), and ability to grow in specific climatic conditions.

Q: How much algae grows in a hectare?
There are a number of variables including innate growth rate per species and seasonal availability of sunlight. We anticipate that a commercial algae farm will grow an average of 10 times more oil per hectare as compared to Jatropha. We estimate a modest growth rate of 100 tons Algae Biomass per hectare per year. From this we shall obtain 25 tons of oil & balance shall be used for cattle feed.

Q: What products does an algae crop yield?
An algae farm is designed to produce a number of products including algal oil, delipidated algal meal (DAM) and dried whole algae (DWA). The algal oil is suitable for conversion to biodiesel and can be substituted for any other vegetable oil (soy, palm, Jatropha) in a commercial biodiesel production plant. The DAM and DWA are suitable for a wide variety of animal feed applications.

Q: How much oil can be made from algae?
Different species of algae generate different amounts of oil. Algae species can contain from 2% to 70% of their weight as oil.

Q: How does Algal meal compare to other meal products?
The algae meal has a high protein content compared to other animal feed product such as dried distiller’s grains from ethanol production or soy meal after oil removal.

Q: What is the benefit of focusing on algae instead of other energy crops like Jatropha?
Growdiesel has done substantial work on Jatropha, in fact we have a portfolio of 30 different fast growing variants of Jatropha. We also have a model plantation in 100 acres in India. However we discovered that Algae have some advantages to other energy crops, specifically:
 Algae are the fastest growing plants in the world and can be grown year round, unlike seasonal crops.
 Algae farming does not require agricultural land or clean water, so it does not compete with food crops for these resources.
 While it is difficult to compare one energy crop to another, per hectare of farming of algae is around 10 to 100 times more productive than corn, soy, palm or Jatropha,
 Unlike other energy crops, the entire biomass produced from algae can be used in end products.
 Lastly, the algae can be used to produce renewable biofuels needed to reduce dependence on non-renewable fuel sources such as coal, oil and natural gas.

Please register online for attending Algae Biofuel Summit 2009. Experts shall be available at the summit for providing you complete info on this wonderful project.

Q: Do you believe that algae are the solution to the world’s energy problems?
We believe that ecological and energy issues are complicated and will require a variety of solutions -- of which algae will be one.

Q: Are there any accurate measures to compare algae to other energy crops?
Due to a large number of variables, it is difficult to accurately compare one energy crop to another. We recommend comparing energy crops based on the final products produced, and the resources required to produce those products.

Q: How are algae different from other energy crops?
Algae are different from other energy crops in one significant way--the entire biomass produced from an algae farm can be used in end products that are economically valuable. Unlike comparable crops (corn, sugar cane, rapeseed/canola, palm, soybeans, sunflower, Jatropha, etc.) which typically contain a substantial amount of wasted biomass, 100% of algal biomass can be used to create new products.

Q: How does algae productivity compare to other energy crops?
Unlike seasonal crops, algae can be grown year round. Since an algae crop does not result in wasted biomass, algae are generally considered to be more productive than comparable energy crops. While other TBO like Jatropha takes 2-3 years for a commercial crop, algae farm can start yielding within 2-3 days. While Jatropha gives crop once a year, algae can give oil on daily basis just like milk.

Q: How much CO2 can algae consume?
CO2 consumption is based on the overall lipid/protein/carbohydrates balance of the final algae. Lipids are typically about 75% carbon by weight, with carbohydrates approximately 40% carbon by weight, and proteins between the two. Algae are approximately 50-55% carbon by weight; about 1.9 times the biomass weight in CO2 is required to generate algae with this composition. If algae with a higher lipid content is produced, that ratio will be higher; the higher the carbohydrate composition, the lower this ratio.

Q: How large must an algae farm be to mitigate emissions from a typical power plant?
Based on information in public domain, for approximately 50 power plants in India that generate and sell electricity as their primary business and use coal as the primary power source, the average facility nameplate size is 655 megawatts. For this 'average' plant, when both the power plant and algae farm are in full operation, approximately 8000 hectares of algae growing area is required to consume 40% of CO2 emissions. To achieve a 5% reduction in CO2 emissions, 500 hectares of algae growing area would be required for each power plant. This becomes an interesting business model for the utility as it can generate huge carbon credits by converting its emissions to biodiesel.

Q: How much water does an algae farm require?
An enclosed algae farm uses minimal water and the evaporation losses are also limited. Some water is required for the photosynthesis reaction, and some is lost in the creation of algal products. However as compared to any other energy crop, algae farm consumes just 1% of water.

Q: Can an algae farm use waste feed water streams that are high in nutrients such as phosphorous and nitrogen?
Nutrient-rich waste water feed streams will be used to provide some or all of the nutrients needs of the algae farm. Streams which have a potential to be used in this way include runoff from animal facilities and treated wastewater. Q: Where can I get complete info to establish an algae Biofuel project?
Please register online for attending Algae Biofuel Summit 2009. Experts shall be available at the summit for providing you complete info on this wonderful project.

Q: What is Photosynthesis?
Photosynthesis is the process by which plants utilize the energy in the sun’s rays to produce energy and new plant matter (biomass). Photosynthesis is the base reaction supplying the vast majority of energy used by plants and animals on earth. In photosynthesis, energy (photons) from the sun’s rays converts carbon dioxide and water to carbohydrate plus oxygen. The carbohydrate can be converted to protein or fat.

Solar energy is spread along a wide range of wavelengths, of which only a portion is useable for photosynthesis. The wavelengths useable by plants are known as photosynthetically active radiation (PAR), and include about 45-50% of the total solar energy. Energy requirements of the photosynthesis reaction reduce the usability of that 45-50% by another factor of 4, making the theoretical energy use roughly 11% of the overall solar energy.

This photosynthetic efficiency is translated into biomass including fats, proteins, complex carbohydrates (cellulose, lignin, etc.) and simple carbohydrates. Also, most crops contain water. To eliminate the effect of water, we present values based on dry biomass. We also need to understand that production of other compounds from simple carbohydrates requires some of the energy.

We have grown algae at a photosynthetic efficiency of approximately 5.4% under natural sunlight. General crops grow at a photosynthetic efficiency of approximately 1%. Algae can be grown much more efficiently because of the nature of the bioreactor and the removal of factors that might limit growth such as lack of nutrients or CO2.

You can also improve algae growth by using artificial lighting. Algae will grow 24 hours per day if there is sufficient light. However, due to the energy losses inherent in each step from generating electricity to create light and using the light for photosynthesis, this is not economical for anything other than studies, unless the value of the final product is very high (as it is for some commercial algae farms where artificial light is used).

Algae could allow companies to recycle emitted CO2 from flue gases and even earn a profit from being "green". Fast growing algae use the process of photosynthesis to harness sunlight and carbon dioxide and then convert them into carbohydrates. The cells containing these valuable materials can then be utilized for the production of various fuels such as biodiesel and ethanol, or used as ingredients for animal feed.
Companies, having issues with environmental control, can surely benefit from such technology. Algae farming technologies will allow the capture and recycling of CO2 from smokestacks, fermentations and geothermal gases. The beautiful part of this technology is that industrial facilities do not need large internal modifications to host an algae farm.
More details about this promising technology can be had at 2nd Algae Biofuel Summit 2009” from 8th to 10th Sept 2009.
Algae can surely make an impact on many industrial companies. The algae technology has the potential to substantially effect companies' policies, making it more profitable not to pollute.

Baik-Buruk Biofuel

Sumber : www.greenradio.fm
Biofuel adalah salah satu energi alternatif pengganti bahan bakar fosil yang kian hari kian mendapat perhatian dari banyak kalangan. Namun mungkin masih banyak dari kita yang belum tahu apa itu biofuel dan apa sisi baik dan sisi negatif dari produksi biofuel yang perlu kita tahu. Apalagi kelapa sawit Indonesia banyak disorot sebagai sumber biofuel yang dianggap tidak baik. Kenapa begitu? Berikut petikan hasil investigasi Vikki Miller dari Guardian.
Apa itu biofuel?
Biofuels dapat dibuat dari bahan-bahan organik yang bisa dikembangkan secara cepat. Dua pemain besar di pasaran adalah biodiesel dan bioethanol – minyak cair yang terbuat dari organisme hidup, seperti tanaman dan hewan. Pertimbangannya daripada bahan bakar fosil, biofuel adalah sumber energi yang bisa diperbaharui dan berkelanjutan, juga salah satu dari sedikit teknologi yang menggantikan penggunaan bahan bakar minyak pada untuk transportasi.

Dari mana kita memperolehnya?
Sebagian besar biofuel yang digunakan saat ini berasal dari pertanian. Tiap-tiap negara mengkhususkan diri pada tipe biofuel tertentu, tergantung pada iklimnya. Di Eropa biofuel diolah dari rapeseed (Brassica napus), gandum, tebu, Sementara di Amerika umumnya berasal dari jagung dan kacang merah (soybeans). Tebu cenderung tumbuh di Brasil dan minyak kelapa sebagian besar berasal dari Asia Tenggara.
Namun, saat ini tiba pada biofuel generasi kedua – dengan sumber bahan pembuatan biofuel yang lebih luas, termasuk zat-zat organik, sisa makanan, kayu, limbah rumah tangga, bisa diolah menjadi biofuel. Disini seluruh hasil pertanian bisa digunakan sehingga kita bisa efisien dalam pengurangan gas karbon. Hanya saja para ahli meyakini masih perlu lima hingga sepuluh tahun untuk membuatnya berjalan secara komersial.
Juga ada harapan cukup tinggi pada algae dan jatropha, tumbuhan semak beracun yang tumbuh di Amerika, Afrika dan Asia.
Bahkan produk seperti coklat, permen, dan kripik kentang pun bisa diubah menjadi biofuel.

Apakah ini penemuan baru?
Tak sepenuhnya. Mesin diesel, yang diciptakan insinyur Jerman Rudolf Diesel 1892, pertama kali dijalankan menggunakan minyak kelapa. Di awal 1900an, Henry Ford mendesain salah satu kendaraan pertamanya berbahan bakar ethanol.

Kenapa penggunaan biofuels sempat dihentikan?
Minyak bumi murah, khususnya dari Timur Tengah, mengalihkan minat dan penelitian dari biofuel. Minyak bumi murah mendominasi pasar.

Kenapa sekarang biofuel kembali diminati?
Berkembangnya kepedulian pada perubahan iklim, peningkatan harga minyak bumi dan ketidakamanan suplai minyak bumi membuat pemerintah dan kalangan industri bergegas mencari alternatif pengganti. Amerika bertekad 2025 mengganti 75% minyak bumi importnya dengan biofuel. Uni Eropa meyakini biofuel sebagai faktor kunci penurunan karbon di masa datang, dan menargetkan 10% transportasi berbahan bakar biofuel di 2020.

Apa untungnya beralih ke biofuel?
Sumber biofuel dapat diperbaharui, suplai bisa disediakan sesuai yang dibutuhkan, sehingga secara teori jumlahnya tidak terbatas dan aman. Juga tidak pelarangan biofuel di banyak negara sehingga bisa suplai bisa terkendali. Kelebihan lainnya, biofuel bisa digunakan untuk menjalankan mobil dan mesin-mesin yang ada sekarang.

Apakah biofuel baik untuk lingkungan?
Secara teori, pembakaran biofuel akan melepaskan karbon sejumlah yang dia ambil ketika masih berupa tumbuhan saat bertumbuh. Kalau ditotal jumlah karbon yang dihasilkan saat dipanen, diolah dan didistribusikan, mungkin masih belum cukup memuaskan. Namun, ini tetap jauh lebih sedikit dibanding penggunaan bahan bakar fosil.

Adakah dampak negatifnya?
Biofuels juga memunculkan kritik menyangkut lingkungan hidup. Selain melepaskan emisi karbon yang rendah saat pembakaran, namun peningkatan perluasan lahan pertanian untuk produksi biofuel secara keseluruhan juga punya sumbangan pada peningkatan karbon di atmosfir.
Konsumsi biofuel yang meningkat secara global berarti juga ada sumbangan dalam pengrusakan hutan basah dan hutan tropis untuk menyediakan lahan tanaman sumber biofuels. Gas rumah kaca dalam jumlah yang sangat besar dilepaskan saat pembukaan lahan, ini membuat para ilmuwan meragukan ini sebagai solusi pengurangan gas karbon. Ini juga punya dampak utama pada konservasi tanaman dan binatang yang hidup di area itu, sebagaimana makin rentannya perlindungan air dan tanah.
Saat ini juga mulai dikenali dampak kekerasan social dan ekonomi yang bisa timbul. Kelangkaan bahan pangan meningkat di negara-negara miskin, karena perubahan lahan pertanian tradisional menjadi ladang pertanian untuk kebutuhan biofuel.
Belum lagi, peningkatan kebutuhan pada hasil pertanian, seperti beras, jagung atau soya, yang juga bisa digunakan selain sebagai bahan pangan juga biofuel, telah mendongkrak harga, membuat kaum miskin semakin sengsara. Di Mexico tahun lalu terjadi kerusuhan.

Apakah sebagian biofuels lebih baik dari yang lain?
Biofuel yang terbaik, seperti ethanol diproduksi dari tebu di Brazil, dapat menghasilkan energi 10 kali dari energi yang dibutuhkan untuk memproduksinya, dan melepaskan seperempat gas emisi karbon dibandingkan bahan bakar fosil.
Sebaliknya, biofuels yang tidak bagus menghasilkan energi yang lebih rendah, dan menyumbang emisi karbon secara tidak langsung melalui pembakaran hutan dan konversi hutan untuk lahan tanam mereka. Biodiesel yang diproduksi dari minyak kelapa sawit di Indonesia adalah contoh biofuel yang buruk.

Biofuel mailing list

Source : http://www.journeytoforever.org/biofuel.html

The Biofuel mailing list run by Journey to Forever is an information-sharing resource for anyone who is making their own fuel or has an interest in biofuels or related issues.All aspects of biofuels and their use are covered -- biodiesel, ethanol, other alternative fuels, related technologies and issues, energy issues, environment, sustainability and more.The list has a large and varied global membership and has been at the forefront of small-scale biofuels development for more than eight years.Comment from a member: "I just want to say how important what you all are doing here is (I'm just an interested bystander). Closed-system fuel production, on a local or small regional scale, tied to local resources, using accessible technologies, and dependent on entrepreneurial innovation combined with open-source information exchange--it's AWESOME. Keep up the good work everyone, before the planet fries."Another comment: "Some of the brightest biofuel brains in the world."And another: "Your list contains some of the best information I have found on the Internet. The archives are great and that is where I spend most of my time acquiring knowledge. This information I believe vitally important NOW and am very happy it is here. Our future may just depend upon it. Now that is important."More:
"I came to the list strictly interested in getting my biodiesel project off the ground. Following the various postings I have discovered that I see the world as if from the bottom of a well. The view is expanding ever so slightly, ever so slowly. Thanks to all."
"The Biofuel list has awakened me to many ways I can directly help make a difference. The knowledge I have gained from reading the list in a few short months has encouraged me to try again."
"I benefit very much personally from the list, and I have yet to make one drop of biofuel! But the insights that I get from the list are amazing."
"I like the global view. It's good to have your beliefs challenged."
"This list has proven to me how little I know, so many times."
NOTE: You don't need to join the Biofuel list to learn how to make biodiesel. Start here: Where do I start? Follow the instructions, step by step. Study everything on that page and the next page and at the links in the text. It tells you everything you need to know.It's not just us who say so, it's largely the result of a collaborative effort over nine years involving thousands of people worldwide, it's what works.Many list members say the same thing. If you ask novice questions at the list that have been answered many times before, that's what you'll be told (or asked to check the list archives, see below).There's a lot to learn, but it's simple, and you don't have to be a chemist to do it, very few biodieselers are chemists or engineers.Thousands of ordinary people have done this without any other help, and so can you. You don't need anyone to show you how, and you don't need to find another biodieseler in your area first so you can see their set-up in action. Not all biodiesel brewers are the same, not all make quality fuel (though they might think they do). There's a fair chance you'd just be picking up someone else's bad habits.Comment from a visitor to our site: "We got hold of two gentlemen who are running seminars on making biodiesel. Neither of them is making quality biodiesel, in fact they are teaching everyone else how to make poor-quality biodiesel. One didn't even know what the methanol test was. It is certainly a poor picture of what's going on with biodiesel here..."It's not unusual.Do it yourself, you'll be just fine.SubscribeIf you have a bona-fide interest in the subject you're welcome to take part or to "lurk" in the background, just as you wish. The list does not welcome "SPAM" or "trolls".If you wish to subscribe, please send an email to the list administrators with a brief explanation (or not-so-brief, as you wish) of who you are, where in the world you live, what your interest is in biofuels and why you wish to join the list, and/or whatever other information you think is relevant.Please note that the Biofuel list is not a newsletter service and not a "website", it is an interactive email discussion group often posting many messages a day. If that will "swamp your mailbox", please read this message on how best to handle mailing list traffic:http://www.mail-archive.com/biofuel@sustainablelists.org/msg21651.htmlOnce they've joined the list, members can also select the "Daily Digest" option to receive one or more composite messages containing all the day's messages.

How much fuel can we grow? How much land will it take?

Source : http://www.journeytoforever.org
Frequently given answers: "We can't grow enough fuel" and "It will take too much land."Are they the right answers?To estimate maximum biofuels production available acreages are cited, along with crop yields and production rates, but the totals fall far short of current consumption and estimated future growth in transport fuel use.Meanwhile the spectres loom of the "Peak Oil" scares of declining oil supplies on one hand and the mounting crisis of global warming caused by fossil-fuel carbon emissions on the other, while oil prices soar.It seems obvious that the highest-yielding biofuels crops will produce the most energy from the least amount of land.Seeking to bridge the unbridgeable gap, there's widespread fascination with high-yielding crops, particularly oil-bearing algae (though nobody has actually produced any biodiesel from algae yet, apart from laboratory tests), along with oil palms, and ethanol from cellulose (also not yet a reality).But high yield is not the only factor in farming, and it may not always be the most important factor. It can make more sense for a farmer to grow a lower-yielding crop if it has more useful by-products or requires fewer inputs or less labour or it fixes more soil nitrogen for fertiliser or it fits a crop rotation better. Or if it fits an integrated on-farm biofuels production system better. The how-much-land estimates don't seem to include such things as integrated on-farm biofuels production systems. There are quite a lot of things they don't include.
Food and energy• The human population has quadrupled in the last century, from 1.5 billion to 6.3 billion, while the amount of energy used in food production systems has increased 80-fold. It now takes 80 times more energy to feed four times more people.• Ten percent of the energy used in the US is consumed by the food industry.• It uses up to 10 times as much fossil fuel energy to produce it as food returns -- it takes seven to 10 calories of input energy to produce one calorie of food.• Two fifths of food production energy goes to processing and distribution and another two fifths to cooking and refrigeration by final users. Only one fifth is used on the farm, half in chemicals.• Making and transporting one kilogram of nitrogen fertilizer releases 3.7 kg of carbon dioxide into the atmosphere.• There has been a 20-fold increase in insecticide use since 1948 -- up to a billion pounds per year -- but today insect damage accounts for 13 percent of yield compared to 7 percent then.Sources:-- Is the Deadly Crash of Our Civilization Inevitable?-- Fossil Fuels and Industrial Farming-- Natural CapitalismSustainable farms use less fossil fuel and release less carbon than industrialized farms, while the food they produce doesn't travel as far from farm to table and is much less processed. Sustainable farms don't use fertilizers, they use compost.Compost and CO2"Not only does it have agricultural benefits, but composting also combats climate change. When plant wastes are sent to landfills they turn into carbon dioxide and methane, two of the most common greenhouse gasses. When those plants are composted, they lock up carbon from the atmosphere for decades! And when you compost and add that compost to your garden's soil, you are also sequestering additional carbon dioxide."The report details how one organic gardener sequestered 19 tons of carbon by making compost.
-- Composts: Closing the Loop, Foodshare TorontoSustainable farmingBiofuels crops have to be grown, and there's a lot of common ground between growing sustainable fuel and growing sustainable food.Large-scale industrialised farms claim to be the most efficient. They concentrate on growing high-yielding monocrops (only one crop) by mass-production methods with a lot of inputs, and they use a lot of fossil-fuel to do it. Industrial farming is a major source of global warming carbon emissions (14% of the world total, the same as transport).A sustainable mixed farm can produce its own fuel, with much or possibly all of it coming from crop by-products and waste products without any dedicated land use, and with very low input levels.That sheds a different light on how much land is needed to grow "enough" biofuels: less land with sustainable farming, which also has much lower fossil-fuels inputs than industrial farming. Sustainable farming is the fastest-growing agricultural sector in many countries, millions of farmers worldwide are turning to sustainable methods.Although sustainable farms require fewer inputs than "conventional" (industrial or factory-style) farms, yields and production are not lower. See for instance this message to the Biofuel mailing list from a large-scale organic farmer in the US, one of many:http://www.mail-archive.com/biofuel@sustainablelists.org/msg12485.htmlSee: Small farmsThe case for organics -- Scientific studies and reportsCity farmingLooking at it from a different angle, according to the UN Food and Agriculture Organisation more than 15% of the world's food supply was produced by city farms in 1993. That was enough food for 900 million people, produced with few inputs other than urban wastes, and with the use of no farming land at all.City farming is sweeping the world, in the industrialised countries as well as 3rd World countries. Many cities would have difficulty handling their wastes without the urban farms recycling them as livestock feed, compost and fertiliser.Such an approach suits localised biofuels production very well, and it integrates well with city farming.For example, only about 10% of the waste vegetable oil (WVO) produced in the industrialised countries is collected, billions of gallons a year aren't collected. The US uses an estimated 3.6 gallons (13.6 litres) of cooking oil per person per year, that's at least 1.1 billion gallons (4.2 billion litres) (see "Urban Waste Grease Resource Assessment," G. Wiltsee, NREL, 1998, 476 kb pdf, download). US restaurants produce about 300 million US gallons (1..135 billion litres) of WVO a year, much of which ends up in landfills. An estimated 1.5 million US gallons (5.7 million litres) of grease and oil goes into the sewage system every year for every one million people in some US metropolitan areas. Extended nationwide that's hundreds of millions of gallons wasted every year.Like newspapers, bottles and aluminium cans, waste cooking oil won't be recycled effectively without locally based initiatives, it has to start at the source. Local biodiesel brewers around the world are now reclaiming millions of gallons of WVO and turning it into good, clean fuel.
Food and Peak Oil"We have to produce food differently. The Monsanto/Cargill model of industrial agribusiness is heading toward its Waterloo. As oil and gas deplete, we will be left with sterile soils and farming organized at an unworkable scale. Many lives will depend on our ability to fix this. Farming will soon return much closer to the center of American economic life. It will necessarily have to be done more locally, at a smaller-and-finer scale, and will require more human labor. The value-added activities associated with farming -- e.g. making products like cheese, wine, oils -- will also have to be done much more locally."-- from The agenda restated, James Howard Kunstler, Energy Bulletin, 5 Feb 2007Similarly, large amounts of fuel ethanol can be produced from city wastes by local micro-breweries, and the high-protein distillers mash by-product fed to city-farm livestock (or micro-livestock). Large amounts of biogas can be produced from wastes in backyard methane digesters for cooking and heating, and the sludge composted for use as fertiliser.Could enough bio-energy be produced for 900 million people this way? Probably it could. "How much land will it take?" None.Bio-regional energy -- India's TalukasHere's another response to the "How much land" question, from the Biofuel mailing list:
"We did a study in India where we showed that it is possible to take care of energy needs completely by biomass and its various derivatives for a block of about 100 villages." -- Dr. Anil K. Rajvanshi, Director, Nimbkar Agricultural Research Institute (NARI)
Here's Dr. Rajvanshi's study:Microchips to Potato chips - Talukas can produce all, published as an editorial article in the Economic Times 24 May, 1998, Anil K. Rajvanshi, Director, Nimbkar Agricultural Research Institute (NARI), Maharashtra, INDIA.http://education.vsnl.com/nimbkar/taluka.html
Talukas can provide critical mass for India’s sustainable development, Anil K. Rajvanshi, Current Science, Vol. 82, No. 6, 25 March 2002http://education.vsnl.com/nimbkar/criticalmass.htmlIndia's food and energy self-sufficient Talukas are groupings of about 80-100 contiguous villages pooled together to achieve a critical mass economically. A Taluka can be thought of as a closed biomass and rainwater basin, with a combined population of about 200,000 people. There are thousands of them in India. One Taluka studied produced 100,000 tons a year of surplus agricultural residues available for biomass energy production. In conjunction with energy plantations and energy crops this could produce the energy equivalent of 30 million litres a year of petroleum products, filling local energy needs and creating 30,000 local jobs.Dr. Rajvanshi's study became the basis for India's National Policy on Energy Self-sufficient Talukas in 1997 and is being implemented nation-wide by the Ministry of Non-conventional Energy Sources (MNES).Negawatts"Using existing technology we can save three fourths of all electricity used today. The best energy policy for the nation, for business, and for the environment is one that focuses on using electricity efficiently," says Amory Lovins of the Rocky Mountain Institute in the US.
"More efficient use is already America's biggest energy source -- not oil, gas, coal, or nuclear power. By 2000, reduced 'energy intensity' (compared with 1975) was providing 40 percent of all U.S. energy services. It was 73 percent greater than U.S. oil consumption, five times domestic oil production, three times total oil imports, and 13 times Persian Gulf oil imports. The lower intensity was mostly achieved by more productive use of energy (such as better-insulated houses, better-designed lights and motors, and cars that were safer, cleaner, more powerful, and got more miles per gallon), partly by shifts in the economic mix, and only slightly by behavioral change. Since 1996, saved energy has been the nation's fastest-growing major 'source.'" -- Amory B. Lovins
"Negawatts powerplant" energy efficiency programs can save large amounts of energy and large amounts of money. 2.1 jobs are created in energy efficiency/conservation in comparison to one new job for an equivalent amount of BTUs in new energy production.From a message to the Biofuel mailing list:
"I remember canvassing the Orlando, Florida area attempting to generate public support for a 'negawatts powerplant' rather than Orlando Utilities Commission expanding Curtis Stanton I into Curtis Stanton II (both coal fired). The most conservative calculations were that a modest to robust energy efficiency program could forestall the need for Stanton II for at minimum 10 years, in turn saving the public literally hundreds of millions of dollars. (Mind you this is a publicly owned utility, with the supposed obligation to serve the public interests.)..."For the rest of the message see: http://snipurl.com/iesa 'Energy Efficiency and "Stuff" in general' (the whole message thread is linked at the end of the page).
The Negawatt Revolution, Amory B. Lovins, The Conference Board Magazine, Vol. XXVII No. 9, September 1990, 232kb PDF.http://www.rmi.org/images/other/Energy/E90-20_NegawattRevolution.pdfMobilizing Energy Solutions, Amory B. Lovins and L. Hunter Lovins, The American Prospect, Volume 13, Issue 2, January 28, 2002 -- Part 1:http://www.prospect.org/print/V13/2/lovins-a.htmlPart 2: Energy Foreverhttp://www.prospect.org/print/V13/3/lovins-a.htmlEnergy Library -- articles and studies by Amory B. Lovins of the Rocky Mountain Institutehttp://www.rmi.org/sitepages/pid171.phpInvisible farmingIndustrial hemp is a high-yielding multi-purpose "fuel and fibre" crop that has great potential for biomass energy. Hemp yields four times as much biomass as a forest can yield. An acre of hemp yields 10 tons of biomass in four months, enough to make 1,000 gallons of methanol fuel (by pyrolytic distillation), with about 300 lb of oil from the seed (about the same as soy).Hemp is widely grown in many countries but not in the US, where it's illegal because of a stubborn confusion with the plant's cousin, the drug marijuana. Industrial hemp is the same species of plant but without the drug. In fact hemp contains another chemical (CBD) that actually blocks marijuana's drug effect -- hemp is not only not marijuana, it could be called "anti-marijuana".The US previously acknowledged the distinction and hemp was widely grown there -- the US State Department still acknowledges the difference internationally. But domestically, growing hemp is banned in the US. In Europe it's subsidised, like oilseed rape and flax. Canada, Russia, China and dozens of other countries grow large quantities of hemp, while Americans pay $25 million a year for imported hemp fibre and oil products.
"Marijuana Called Top U.S. Cash Crop"
"Marijuana is the top cash crop in 12 states and among the top three cash crops in 30, according to a new study. The study estimates that marijuana production, at a value of $35.8 billion, exceeds the combined value of corn ($23.3 billion) and wheat ($7.5 billion)." See "Marijuana Called Top U.S. Cash Crop", ABC News, February 14, 2007The new study: Marijuana Production in the United States (2006), by Jon Gettman -- full text online.Entire Report (356 kb pdf)Meanwhile an estimated 32 million law-breaking Americans smoke marijuana, probably a lot more than that, and that's not counting Canada. Most of the drug is locally produced, not imported. We've no idea what acreage that represents, but it's obviously a major agricultural industry, and it's invisible. How can you hide a crop for 32 million people? It's produced with no extension agencies, no subsidies, no bureaucrats, no chemical corporations, no marketing boards, no Big Agriculture, and with no apparent use of farming land.How would the Americans who claim there's not enough land to grow biofuels explain that? Could enough bio-energy for 32 million people also be produced that way, from harmless industrial hemp, tucked away out of view off the agricultural map and nobody even notices it?Of course it's clandestine and hidden because the US marijuana growers are under pressure from the law, but on the other hand the whole human race is under much more pressure than that to find sustainable answers to its energy problems, and so far we're not being very imaginative about it.However the illegal drug growers might be managing it, it's obvious that people estimating how much land it will take to grow enough biofuels aren't asking the right sorts of questions.Hemp Biomass for Energyhttp://www.fuelandfiber.com/Hemp4NRG/Hemp4NRG.htmA different approachReplacing fossil fuels with biofuels isn't the answer. Replacing fossil fuels isn't even an option -- current energy use, especially in the industrialised countries, is not sustainable anyway, whatever the energy source.A very large portion of the energy we use is just wasted, and that's where to start, not with trying to replace the 60 billion gallons of petroleum diesel and 120 billion gallons of gasoline the US consumes each year, not to mention the heating oil and the power supply. ("The US uses three times as much and Canada four times as much energy in their buildings as Sweden does, even allowing for climate corrections." -- Energy Saving Now)
Energy futures"The [U.S.] military needs to take major steps to increase energy efficiency, make a 'massive expansion' in renewable energy purchases, and move toward a vast increase in renewable distributed generation, including photovoltaic, solar thermal, microturbines, and biomass energy sources... Renewables tend to be a more local or regional commodity and except for a few instances, not necessarily a global resource that is traded between nations." -- U.S. Army Corps of Engineers, 2005See Oil shortage threatens military, US News & World Report, 3/15/06The US Army report:Energy Trends and Their Implications for U.S. Army Installations, U.S. Army Corps of Engineers, Engineer Research and Development Center (ERDC), September 2005Full report, 1.2Mb pdf:U.S. Military is the largest consumer of oil on earth"The US military is completely addicted to oil. Unsurprisingly, its oil consumption for aircraft, ships, ground vehicles and facilities makes the Pentagon the single largest oil consumer in the world. According to the 2006 CIA World Factbook rankings there are only 35 countries (out of 210) in the world that consume more oil per day than the Pentagon." -- US military oil pains, Energy Bulletin, 17 Feb 2007"A sustainable energy future requires great reductions in energy use, great improvements in energy efficiency, and decentralisation of energy supply to the local-economy level, along with the use of all ready-to-use renewable energy technologies in combination as local circumstances require."
We've been saying that for years. Now even the US military is saying similar things (see box, right).But instead people chase the mirage of the highest biofuels crop yields in the hopes of finding the right answer to the wrong question.The powers-that-be mostly toy with the problem and go right on hitting the good old massive daily fix of fossil-fuel like it's a narcotic.In most of the industrialised countries biofuels are still treated more as an agricultural commodities issue than an energy issue, and the industrial farming lobby pulls the levers. Big Soy runs the National Biodiesel Board in the US, Big Corn the fuel ethanol business.But growing supposedly clean green renewable and sustainable biofuels crops by means of Big Agriculture's unsustainable industrialised agriculture monocropping methods with their heavy dependence on fossil-fuel inputs is hardly the best way of replacing fossil fuels.Once grown, the stuff undergoes the same insanities as the "food miles" fiasco, where food is transported thousands of unnecessary miles before it reaches consumers, with huge waste of energy and no good reason for it. Similarly, why waste energy trucking energy crops to a distant large-scale central processing unit and then waste even more energy trucking the finished fuel all the way back again, instead of processing it and using it right there where it was grown?Small is beautifulThere are of course economies of scale in fossil-fuels production, but that's no more the case with biofuels production than it is with food, as we saw above with the example of city farms. The farms of the future are highly productive, low-input/high-output, integrated, mixed, sustainable farms, and they're small farms -- family farms, small and local. All over the world small farms are more efficient and productive than big farms and out-produce them, including the US. See: Small farms fit. As with food crops, so with fuel crops.Also at the local level, the worldwide community of biofuels homebrewers have developed cheap, effective and safe small-scale production methods that produce high-quality fuel and that anyone can use. There are now many kinds of independent small-scale local operations producing and using millions and millions of gallons of biofuels a year, growing fast. Most of it goes right under the official radar, nobody calculates it, nobody has any clear idea of how much it is or of quite who these people are. But they're forming active networks of grassroots-level biofuels producers in many countries, and they have the potential to expand very quickly.The possibilities for localised biofuels production are endless, but it's difficult to see them from the perspective of the dying era of cheap and abundant fossil fuels with it's top-down, centralised, capital-intensive approach, especially with energy production and supply: "How do you make money out of this small-scale stuff? It's bad for business!"In fact it's very good for business -- local business, and that's good for everyone."Small-scale capitalism works out fine, but as scale increases the departure from real capitalism becomes more pronounced---profits are privatized, but costs are socialized. The attendant repair and maintenance are left to succeeding generations if possible, if not, to present low and middle income taxpayers," says Tvoivozhd, the Wise Old Man of the Homestead mailing list. Indeed so.Coming off fossil-fuels doesn't have to be cataclysmic. More likely the real disasters will come from global warming rather than oil deprivation. The quaint idea that "life without oil" will inevitably mean a massive human "die-off" and for the survivors a return to the allegedly brutal and short lives of the Middle Ages etc etc just because of oil deprivation as some people claim is just nonsense, there's no more substance to it than the idea that there's not enough land to grow "enough" biofuels. We have everything we need to live rich and fruitful lives in a sustainable future in peace and harmony with the rest of the biosphere.Don't expect to read more about such views of energy issues in The Wall Street Journal any time soon. What you might read there is that meanwhile 35 years have gone by since these issues first became apparent, fuel economy in the US is worse now than it was 20 years ago, and 35 unnecessary years' worth of greenhouse gases have been pumped into an ailing atmosphere.Don't wait for governments or anyone else to solve these problems with the same kind of thinking that caused the problems in the first place. Do it yourself -- tend to your own waste of energy and of other scarce resources, shrink your eco-footprint, join a local network, start a network yourself. Make your own biofuel!
-- Kyoto, November 2005
Cutting fuel costsHow to reduce the amount of transportation fuel you use, by Darryl McMahon of Econogics: "It's your planet. If you won't look after it, who will?"http://www.econogics.com/en/savefuel.htmHere's a start on what you can do to make a difference:http://www.mail-archive.com/biofuel@sustainablelists.org/msg54266.htmlThe US uses 3 times as much and Canada 4 times as much energy in their buildings as Sweden does, even allowing for climate corrections. "There is no conflict between comfort and energy saving in buildings. If you understand how the human body works and design your environment to suit Real People, large energy savings will be made..." See Hakan Falk's Energy Saving Now -- extensive resources on energy efficiency, biofuels, alternative energy technologies and more:http://energysavingnow.com/Cutting down waste -- where to start:http://sustainablelists.org/pipermail/biofuel_sustainablelists.org/2005-October/005691.htmlFood miles
Food miles and global warming"The CO2 emissions caused by transporting food locally is 0.118 kg, while the emissions caused by importing those exact same foods is 11kg. Over the course of a year, if you were to buy only locally produced food, the associated CO2 emissions would be 0.006316 tonnes. If instead you were to buy only imported foods like those studied here, the associated CO2 emissions would be 0.573 tonnes." -- from Fighting Global Warming at the Farmer's Market (pdf), Foodshare TorontoImported food releases 90 times as much carbon as locally grown food."We bought a basket of 20 fresh foods from the major retailers on one day last month and tracked the food miles it had clocked up. We found apples from America; pears from Argentina; fish from the Indian ocean; lettuce from Spain; tomatoes from Saudi Arabia; broccoli from Spain; baby carrots from South Africa; salad potatoes from Israel; sugar snap peas from Guatemala; asparagus from Peru, garden peas from South Africa; red wine from Chile; Brussels sprouts from Australia; prawns from Indonesia; chicken from Thailand; red peppers from Holland; grapes from Chile; strawberries from Spain and beef from Britain. Our total basket had travelled 100,943 miles." -- Miles and miles and miles: How far has your basket of food travelled? Guardian UK, Special reports, Saturday May 10, 2003 http://www.guardian.co.uk/food/focus/story/0,13296,951962,00.html"In 1997 we imported 126 million litres of liquid milk into the UK and exported 270 million litres of milk out of the UK. We imported 23,000 tonnes of milk powder into the UK and exported 153,000 tonnes out of the UK. We imported 115,000 tonnes of butter, and exported 67,000 tonnes of butter." -- Food Miles - Still on the Road to Ruin? -- Statistics and analysis; a review of local alternatives and recommendations for action. SUSTAIN: The Alliance for Better Food and Farming, 1999http://www.sustainweb.org/publications/downloads/foodmiles_ruin.pdf"Produce arriving by truck traveled an average distance of 1,518 miles to reach Chicago in 1998, a 22 percent increase over the 1,245 miles traveled in 1981." -- Food, Fuel, and Freeways: An Iowa perspective on how far food travels, fuel usage, and greenhouse gas emissions, Leopold Center for Sustainable Agriculture, June 2001http://www.leopold.iastate.edu/pubs/staff/ppp/index.htm"Since 1978, the annual amount of food moved by heavy goods vehicles in the UK has increased by 23 percent with the average distance for each trip also up by 50 percent." -- Food Miles and Sustainability, Mae-Wan Ho and Rhea Gala, Institute of Science in Society, 21/09/05http://www.i-sis.org.uk/FMAS.php"Policies are needed to minimize food import/export, to promote instead, national/regional food-sufficiency, and to reverse the concentration of food supply chains in favour of local shops and cooperatives run directly by farmers and consumers. In addition, there should be government subsidies and incentives for reducing carbon dioxide emissions on farms, and for farms and local communities to become energy self-sufficient in low or zero-emission renewables." -- Food Miles and Sustainability, Mae-Wan Ho and Rhea Gala, Institute of Science in Society, 21/09/05http://www.i-sis.org.uk/FMAS.php"Bringing the food supply closer to home is one of the most effective and powerful strategies we can use to create positive changes in our health, in the environment, in our society, and on this planet." -- Bill Duesing, Old Solar Farm, raising certified organic vegetables, and Solar Farm Education, working on urban agriculture projects.http://www.growbiointensive.org/

Food vs fuel?

source : http://www.journeytoforever.org
The anti-biofuels controversy
There's been a growing storm of protest against biofuels in the last few years, rising to a frenzy this year (2008) as the global food crisis hit home.It's been claimed that biofuels are "even worse than fossil fuel", that biofuel production is driving millions of poor people into starvation, that biofuels are a "crime against humanity" -- it's reported that tropical rainforests are being destroyed to make way for biofuels crop plantations, while good farmland is being used to raise biofuels crops instead of food, creating food shortages and driving up food prices, especially for the world's poor.Dozens of countries have seen food riots as prices soared out of reach and angry people took to the streets.Authorities estimate that the crisis has already driven at least 30 million more poor people to hunger, and warn that the numbers of the newly hungry could rise to as much as 290 million or even much higher. And they say much of the blame lies with biofuels production.Are biofuels really to blame?Yes, partly, but there's more to it than that -- it doesn't work quite that way, and neither does hunger.First of all, not all biofuels are the same.GRAIN, an international non-governmental organisation that promotes sustainable agriculture, defined what isn't biofuel in an excellent 60-page report in June 2007 on the damage the biofuels "craze" is causing:"We believe that the prefix bio, which comes from the Greek word for 'life', is entirely inappropriate for such anti-life devastation."So, following the lead of non-governmental organisations and social movements in Latin America, we do not talk about biofuels and green energy."Agrofuels is a much better term, we believe, to express what is really happening: agribusiness producing fuel from plants as another commodity in a wasteful, destructive and unjust global economy."http://www.grain.org/nfg/?id=502Quite right.But GRAIN didn't define what biofuel is, only what it isn't.Real biofuel that causes no anti-life devastation is being produced worldwide by thousands upon thousands of small-scale projects focusing on local production for local use. They use renewable, locally available resources wherever possible, including wastes, and they fit in with the local community and the local environment.Nobody knows quite how many of them there are or how much fuel they produce, but it totals many millions of gallons a year, going up fast, and that many millions of gallons a year of fossil fuels not used.This is the Appropriate Technology approach founded in 1973 by the British economist Dr. E.F. Schumacher in his famous book Small is Beautiful -- Economics as if people mattered, which is still the foundation text on a sustainable future.None of the arguments against agrofuels apply to this type of biofuels production, whether it's of biodiesel, ethanol, biogas or whatever.Real biofuels are indeed clean, green, renewable and sustainable, and it's real biofuels that Journey to Forever promotes and has helped to develop."Small is beautifuel," commented Prof. Pagandai Pannirselvam of Brazil at the Biofuel email discussion group hosted by Journey to Forever.And big is agrofuel, not beautifuel.Like all agribusiness crops, agrofuels are industrialised monocrops that guzzle fossil-fuels, spew out greenhouse gases, wreck the environment and the soil, impoverish local people and are unsustainable in every way.Objections to biofuels-as-agrofuels are really just objections to industrialised agriculture itself, along with "free trade" (free of regulations) and all the other trappings of the global food system that help to make it so destructive.With the demand for agrofuels soaring in the rich countries, agribusiness palm-oil production in the tropical countries is indeed even more evil than it used to be, and it is causing rainforest destruction as the palm-oil plantations spread. But it's really just a difference in scale and degree, it's nothing new -- it was doing that anyway long before the demand for agrofuels arose.It's the same with the other cases where agrofuels production is damaging the environment and ruining local people's livelihoods, it's just agribusiness-as-usual, only worse.The hunger also isn't new. The number of hungry people has been fairly constant at about 850 million for at least 20 years. The current estimate is that 862 million people are starving and nearly 3 billion are undernourished -- nearly half of humanity.A Worldwatch Institute report, "Biofuels for Transport", prepared for the German Federal Ministry of Food, Agriculture and Consumer Protection in 2007, calls for policies to promote small-scale, labour-intensive production of biofuels crops rather than "large plantations of monocultures controlled by wealthy producers, who could drive farmers from their land..." See "Biofuels for Transport: Global potential and implications for sustainable energy and agriculture in the 21st Century", Worldwatch Institute, Earthscan, 2007, 452pp.http://www.earthscan.co.uk/?tabid=1161Extended summary:http://www.worldwatch.org/system/files/EBF038.pdfMore and more people are saying similar things, including some rather prominent ones.Since January 2008, Professor Robert Watson, chief scientist at the UK's Department of Environment Food and Rural Affairs (DEFRA) and Director of the UN's ground-breaking IAASTD World Agriculture Report released in April, as well as the UK government chief scientific adviser Professor John Beddington, plus his predecessor Dr David King, along with a British Royal Society report of a 14-month study on biofuels, and the IAASTD World Agriculture Report itself, have all attacked biofuels production for causing rainforest destruction and displacing food crops and small farmers, and for causing more carbon emissions than they save.But they all pointed out that not all biofuels are the same: there are "good" biofuels and "bad" biofuels.The IAASTD World Agriculture Report, the work of more than 400 scientists over four years and the biggest study of its kind ever conducted, said: "Small-scale biofuels could offer livelihood opportunities, especially in remote regions and countries where high transport costs impede agricultural trade and energy imports."The British Royal Society report said: "Each biofuel must be assessed on its own merits." See Sustainable biofuels: prospects and challenges, The Royal Society 14 Jan 2008, PDF 922kbhttp://royalsociety.org/displaypagedoc.asp?id=28914"It is important to remember that one biofuel is not the same as another," said Professor John Pickett, who co-authored the Royal Society report. He said it "depends on how crops are grown and converted and how the fuel is used".